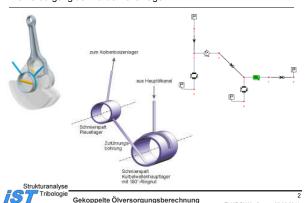
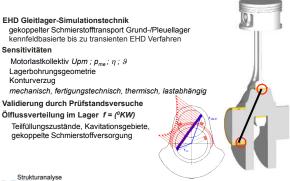

Gekoppelte Ölversorgungsberechnung der Kurbelwellenlagerung mit FIRST und *DSH*^{plus}

Dr.-Ing. Katja Backhaus Dr.-Ing. Richard Schönen Prof. Dr.-Ing. Gunter Knoll


Strukturanalyse
Tribologie
GmbH Aachen

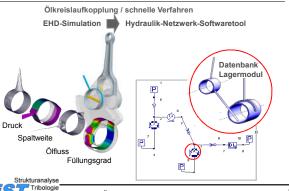
- o Ölversorgung der Kurbelwellenlager
- o EHD Simulation Gleitlager
- o Direkte Kopplung Kurbeltrieblager
- o Kopplung mit DSHplus
- o Ausblick



FLUIDON Konferenz 25.05.2011

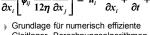
Ölversorgung der Kurbelwellenlager

Ölversorgung der Kurbelwellenlager



Gekoppelte Ölversorgungsberechnung

FLUIDON Konferenz 25.05.2011


Ölversorgung der Kurbelwellenlager

4

EHD Simulation Gleitlager

- Revnoldssche Dal.
 - 2D partielle Dgl. abgeleitet aus

Gleitlager- Berechnungsalgorithmen mit hoher Aussagesicherheit

Spaltweite $h_{ij} < b, d$ Druckverteilung $cp/\partial x_k = 0 \Rightarrow p(h) = const.$

Konsequenzen

- lokale Effekte an Spaltweitenübergängen nur gemittelt darstellbar
- Defizite bei Darstellung von 3D 2-Phasen-Strömungen

Strukturanalyse Tribologie

Gekoppelte Ölversorgungsberechnung

FLUIDON Konferenz 25.05.2011

EHD Simulation Gleitlager

Lösung der Reynoldssche Differentialgleichung

- Sommerfeldsche Druckrandbedingung
 - Negative Druckanteile
- Reynoldssche Druckrandbedingung, Vollfüllung
 - Verletzung der Massenbilanzen
- Teilfüllung Öl / Luftgemisch P Transienter Kavitationsalgorithmus
 - Korrekte Abbildung der Volumenströme

Strukturanalyse

Gekoppelte Ölversorgungsberechnung

FLUIDON Konferenz 25.05.2011

EHD Simulation Gleitlager

$$\frac{\partial}{\partial x}\!\!\left(\!\frac{\rho h^3}{12\eta}\!\frac{\partial p}{\partial x}\!\right)\!\!+\!\frac{\partial}{\partial z}\!\!\left(\!\frac{\rho h^3}{12\eta}\!\frac{\partial p}{\partial z}\!\right)\!=\!\frac{1}{2}\!\left(u_{_1}\!+\!u_{_2}\right)\!\frac{\partial}{\partial x}\!\!\left(\rho h\right)\!+\!\frac{\partial}{\partial t}\!\!\left(\rho h\right)$$

Methoden

1. Impedanz Methode (Kennfeldlösung) - Rechenzeit effizient - Lagerung starr - Lagerbohrung zylindrisch - Ergebnisgrößen integral

2. Online FEM-Methode

- Lösung der Reynolds-Dgl. Lagergeometrie/Ölversorgung
 Lagerbohrungsgeometrie Mischreibungsmodell Teilfüllungsalgorithmus

instationär beliebia konstant (starr) raue Oberflächen Kavitation

3. EHD-Methode

- Wie Online-FEM-Methode - Lagerbohrungsdeformation

lokal

Strukturanalyse Tribologie

Gekoppelte Ölversorgungsberechnung

FLUIDON Konferenz 25.05.2011

EHD Simulation Gleitlager

Mehrkörpersystematik

Systemgrenze Gasdruckverlauf

$$\frac{\partial}{\partial x_i} \left[\phi_{ij}^p \frac{\bar{h}^3}{12\eta} \frac{\partial \bar{p}}{\partial x_j} \right] = u_i^{\Sigma} \frac{\partial \bar{h}}{\partial x_i} + \frac{\partial \bar{h}}{\partial t} + u_i^{\Delta} \sigma \sigma^{\Delta} \frac{\partial \phi_{ij}^s}{\partial x_j}$$

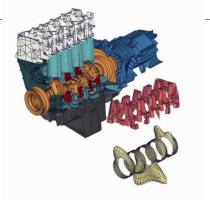
Mehrkörper-/ Struktur-Dynamik

Newtonsche Bewegungsgleichung

Lage, Geschwindigkeit, Beschleunigung

$$\underbrace{M\ddot{u} + D\dot{u} + 2M\dot{\phi} \times \dot{u} + Ku}_{Deformation} = \underbrace{\sum_{\ddot{u}, \ddot{u} \in \mathcal{U}} F_{a} - M \left[\ddot{u} + \ddot{\phi} \times r + \dot{\phi} \times (\dot{\phi} \times r) \right]}_{Schworzunkt}$$

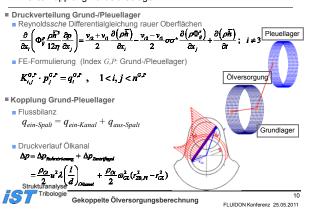
Strukturanalyse

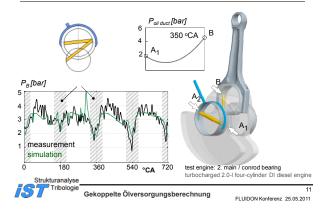

äußere Lasten

Schwerpunkt

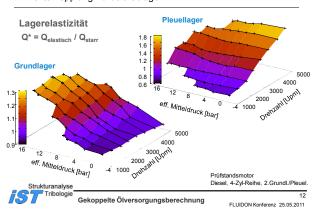
Zeitintegration

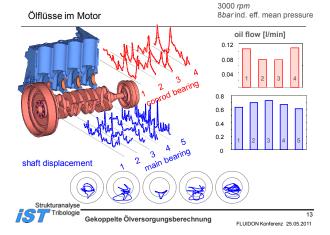
EHD Simulation

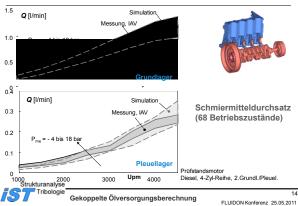



Strukturanalyse

Gekoppelte Ölversorgungsberechnung


FLUiDON Konferenz 25.05.2011


Direkte Kopplung Kurbeltrieblager



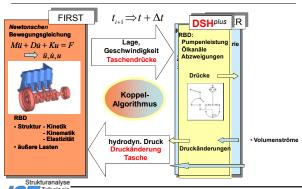
Direkte Kopplung Kurbeltrieblager

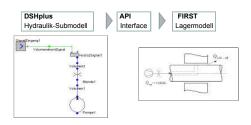
Kopplung mit DSHplus

Direkte Lagerkopplung in TOWER:

- + direkter Zugriff
- Rechenzeit
- Modellierungstiefe Hydraulik
- Flexibilität Modellbildung

DSH_{plus}, Fluidon

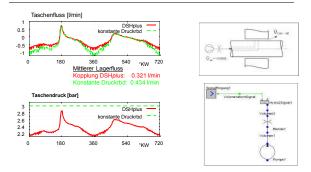

- externes Programm
- + vielfältige Kopplungserfahrungen
- + sehr gute Anbindungsmöglichkeiten
- + verschiedene Kopplungsarten zur Auswahl
 - → insb. Gleichungexport von hydr. Submodellen in TOWER / FIRST
 - → Submodelle parametrisierbar
- + DSH^{plus} Version für <u>erstellte</u> Submodelle nicht erforderlich

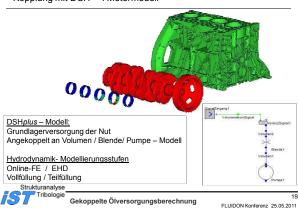

Gekoppelte Ölversorgungsberechnung

FLUIDON Konferenz 25.05.2011

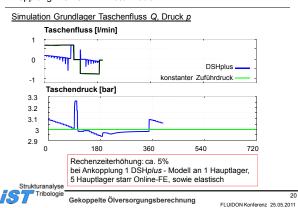
Kopplung mit DSHplus

16




17

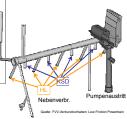
FLUIDON Konferenz 25.05.2011


Kopplung mit DSH^{plus}: Testmodell

Strukturanalyse

Kopplung mit DSHplus: Motormodell

Ausblick


Schmierölkreislauf

1-d HNS Simulationsmodell mit energetischer Kopplung der Ölversorgung der Lagergasse

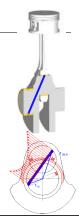
Untersuchung Parametersensitivitäten:

- · reduzierte Pumpenleistung
- Ölversorgung: Ausführung und Lage von Nut, Taschen, Bohrungen
- Lagerspiele
- · Kalt-, Warmverzüge

Gekoppelte Ölversorgungsberechnung

2

FLUIDON Konferenz 25.05.2011


Ausblick

Ölkanalkopplung Haupt-/Pleuellager

Kanal mit Fliehkraftwirkung auf Öl

Untersuchung Versorgungsmechanismen:

- · Druckstoßübertragung
- · Rückfluss aus Pleuellager
- · Versorgungsunterbrechung
- · leer-/volllaufendes Kanalvolumen

Tribologie Gekoppelte Ölversorgungsberechnung

23

FLUIDON Konferenz 25.05.2011

Vielen Dank für Ihre Aufmerksamkeit!