FLUIDON News: Latest Infos and updates

#
25.09.2024
Dr. Benedikt Müller presents a simulation solution for mobile machines at the 13th Mobile Hydraulics Colloquium
In the age of Industry 4.0, mobile machines are becoming increasingly intelligent and connected. In this context, Fluidon will be presenting simulation solutions at the 13th Mobile Hydraulics Colloquium that cover the entire life cycle of mobile machines – from development to commissioning, training, condition monitoring and predictive maintenance. A demonstrator shows an aerial work platform in the virtual development environment Fluidon Cube. The real-time simulation with 3D visualisation follows the instructions given by the visitor using the real joysticks or calculated by the path control in automatic mode. Visitors are encouraged to try it out for themselves: anyone can test their own operating skills or see for themselves the advantages of the aerial work platform's easy control in automatic mode.
#
12.03.2024
Dr. Heiko Baum will present the SaaS development platform Fluidon Cube at the 14th IFK on March 20, 2024.
Aachen, Germany - March 04, 2024 - FLUIDON GmbH, service provider and innovator in the development of software solutions for the fluid power engineering world, is pleased to announce the upcoming launch of Fluidon Cube at the 14th International Fluid Power Conference (14th IFK). Dr. Heiko Baum, Managing Director of FLUIDON GmbH, will give a presentation titled "A novel SaaS development platform for fluid power standard drives" on Wednesday, March 20, 2024, at 3:45 pm, where he will introduce the innovative platform.
#
14.06.2023
Together with more than 100 top-class members, we are committed to advancing the use of digital twins in the industry
The Asset Administration Shell, or AAS for short, the leading concept in the implementation of the digital twin, connects physical components with data and digital services and makes them available to all partners involved in the value creation via a standardised interface. With these properties, AAS is an enabler of continuous and efficient machine and plant development with a lot of potential for new business models. In this context, FLUIDON implements the AAS for the area of simulation model-based development and thus strengthens the link between components and their simulation models, whether in development or during operation. "We are looking forward to the upcoming joint projects and the exchange of experiences with other members." - Raphael Alt
#
12.08.2022
FLUIDON's DSHplus library for piping systems helps in the design of hydrogen storage and distribution systems.
Hydrogen is a key fuel for achieving the goals of a sustainable energy supply. Typical hydrogen storage systems consist of several valves and tanks connected by a branched pipeline network. Regardless of the application, it is quite difficult to design hydrogen storage and distribution systems "by hand". With the simulation tool DSHplus and its expertise in piping design, FLUIDON offers new customized solutions for optimizing hydrogen-bearing systems.
#
10.06.2022
FLUIDON and meastream jointly present their prototype at the 13th IFK in Aachen from June 14 to 15.
FLUIDON GmbH, experienced service provider for simulation and analysis of fluid power and mechatronic systems, will present the prototype for a user-friendly control of multi-axis movements developed together with meastream GmbH, partner in the field of automation technology and mechatronic systems. The combination of meastream’s expert knowledge in technical mathematics, trajectory calculation and automation and FLUIDON’s know-how in the simulation of complex mechatronic-hydraulic systems and their control is a condition for the development of the trajectory automation and 3D control system. The jointly designed solution provides the user with a convenient interface, no longer requiring user input for each individual machine axis. The Fluidon Cube serves as a tool for the model-based development of mechatronic-hydraulic systems: Its Virtual Engineering Lab was used for designing the control system and suitable axis controllers. Users of trajectory automation or 3D control benefit from increased operating speed and productivity, considerable savings in working time and can focus on their core task. In addition, smooth platform motion is achieved, safety is improved, and extensive operator training can be eliminated. "The demonstrator developed together with meastream GmbH is a great example of advanced collaborative engineering," enthuses Dr Heiko Baum, Managing Director FLUIDON GmbH. "Fluidon Cube - The Virtual Engineering Lab - has been developed to support this creative process. The shared development space, unified interfaces, better system integration, faster simulation results, automated result evaluation and presentation allow you to focus on core competencies and increase productivity and solution quality." Learn more about the application potential of the Fluidon Cube and see our trajectory control prototype in action in our exhibition booth 12 at the 13th IFK.
#
14.03.2022
The new release of DSHplus is now available online.
#
06.12.2021
FLUIDON forgoes Christmas cards and instead donates treadle pumps for the irrigation of fields in Zambia
In southern Zambia there has been drought for years. The region is suffering drastically from the consequences of climate change. Until now, the water there has been laboriously scooped out of the holes with old canisters and then distributed over the plants. This takes half a day and can only be done with the help of children. You already know it. Also and especially this year, it is important to us to share our success. Therefore, we are again using the Advent season to contribute our share to aid projects. Together with the aid organisation "Brot für die Welt" (Bread for the World), we are supporting projects in Zambia to irrigate fields: By donating treadle pumps, irrigation, which is essential for survival, can be done in one hour. The fields produce enough and the children can go to school again. We wish you a wonderful Christmas and a healthy 2021. Your FLUIDON team
#
30.11.2021
Exported DSHplus models can be run on all platforms without a licence. On 12 November, the new version 3.13 of the DSHplus simulation environment was released.
This new release focuses on innovations with regard to the runnability of exported DSHplus models, numerical stability, and the integration of nested FMUs (Functional Mock-up Units) into the VEL (Virtual Engineering Lab) real-time system. "We are pleased to make the new release 3.13 of DSHplus now available to our customers," says Oliver Breuer, Head of Software Engineering at FLUIDON GmbH. "The barrier-free runnability of DSHplus models on other platforms and their integrability without additional costs holds great potential, especially for interdisciplinary engineering projects. We have again increased the numerical stability enabling users to calculate multi-layered models without interference. In this way, we prevent complex solution approaches from being narrowed down at an early stage. It is important to us to support the genius of the developer in the best possible way."
#
15.06.2021
Free webinar | June 24, 2021 | 10:00 am EDT | Duration: 30 minutes
In this webinar, we will show you how to optimize your control strategies with the Virtual Engineering Lab (VEL). The webinar is part of the "Simulate & Optimize Manufacturing Processes" event series from our partner Altair. Simulation-based digital twins produce accurate representations of the machine’s behavior and performance. Those digital twins - e.g. created with Altair Activate or DSHplus - can be used for validation of control code if they can be calculated and visualized in real-time. Fluidon’s virtual engineering lab (VEL) implements digital twins via functional mock-up interface, calculates and visualizes them in real-time and connects to any controller hardware used for control code development. By linking digital twins with the control code, the VEL contributes to a holistic system understanding. This webinar uses the example of an excavator to show how a simulation-based digital twin can be created and implemented in the VEL. Then in the next step the control algorithm for a bucket grading operation is developed and tested – all before the excavator goes into service. Presenter: Dr. Torsten Verkoyen | Managing Partner, Fluidon
#
01.12.2020
FLUIDON releases new version DSHplus 3.12. The focus is on innovations in the interface area Functional Mock-up Interface (FMI) according to Standard 2.0.
IMPORT OF FUNCTIONAL MOCK-UP UNITS (FMU) to FMI 2.0 In addition to the already existing FMI export for DSHplus models, FMUs from any simulation program can now be embedded into DSHplus models. The FMI compatibility, which is now given in both directions, enables model exchange with project partners and customers. In its function as co-simulation master, DSHplus supports the modeling of complex systems. In order to significantly reduce the computing time of large models with several FMUs, the calculation can be performed in parallel. EDITABLE PARAMETERS of DSHplus-FMU In order to adjust the system even after the export has been completed, the parameters of the FMU exported by DSHplus can be edited in the importing tool. This eliminates the effort for a new export. EXPORT OF SEVERAL PARAMETER sets for external batch processing When exporting DSHplus models for calculation with DSHcalc, it is now possible to export several parameter sets simultaneously. The model is then ready for an automated simulation of all parameter sets to perform variant calculations without further processing.
#
12.02.2020
The recording of the successful webinar "Simulation of cavitating flows and gas bubble transport" is now available online.
Obviously we hit a nerve with our last webinar. Many developers are struggling with the cavitation that occurs in piping systems and its negative effects on the performance of hydraulic systems. Due to the ongoing discussion and the strong interest in this topic we have now put the recording of the complete webinar online. There, the viewer learns in a total of four videos how cavitation-prone hydraulic systems are simulated with DSHplus. All relevant steps from model construction to result analysis are explained: - What types of cavitation can be distinguished and how are they modeled? - How is the transport of gas bubbles modeled? - Which fluid properties must be known in order to perform cavitation calculations? - How are cavitation-endangered hydraulic systems simulated with DSHplus? The webinar covers the relevant steps from model set-up to result analysis. - What conclusions can be drawn from the simulation results?
#
14.11.2019
DSHplus 3.11 is available in the download area.
The installation file contains the complete program. By assigning a valid license key, DSHplus 3.11 starts with your user profile. If you do not have a license key, DSHplus 3.11 starts as Personal Edition.
#
12.11.2019
Free live webinar on 26 November 2019 at 16:00. More information on content and registration:
The occurrence of cavitation negatively affects the performance of hydraulic systems. The impairments range from increased noise levels to severe and life-limiting wear of machine parts. Cavitation in hydraulic systems can be prevented by early integration of one-dimensional fluid power simulation software into the design process. In this webinar, FLUIDON’s piping expert “RohrLEx” explains how cavitating flows can be simulated with the updated component models of DSHplus. The improved models enable the user to analyze all relevant types of cavitation – vapor cavitation, gas cavitation and pseudo-cavitation – as well as the associated phenomenon of gas bubble transport. To illustrate the workflow when simulating a cavitation-endangered and/or gas conveying system with DSHplus, two exemplary cases are presented and discussed. Webinar Outline What types of cavitation can be distinguished and how are they modeled? How is the transport of gas bubbles modeled? Which fluid properties must be known in order to perform cavitation calculations? How are cavitation-endangered hydraulic systems simulated with DSHplus? The webinar covers the relevant steps from model set-up to result analysis. What conclusions can be drawn from the simulation results? Who Should Attend? The webinar offers valuable insights into the simulation of cavitating flows for any engineer involved dealing with pipelines, hoses or piping systems, irrespective of the material, cross-section shape or size, pipe length or type of fluid. The target audience ranges from fluid power engineers to professionals from Automotive Engineering, Aerospace Engineering, Marine Engineering and Manufacturing to Biomedical Technology.
09.09.2019
Users can now benefit from a new fluid property handling and many more enhancements in DSHplus 3.10
Aachen, Germany, September 10, 2019 - FLUIDON GmbH, the experienced service provider for simulation and analysis of fluid power and mechatronic systems, announced today the release of the new version 3.10 of its simulation environment DSHplus. Starting today, DSHplus users with a valid maintenance contract will automatically receive new license keys. The new version will also be available for download on the FLUIDON web page. New fluid property handling in DSHplus 3.10 With the new version FLUIDON introduces a new fluid property handling that allows users – in contrast to past versions – to include their own fluid property descriptions. In addition, the Bunsen coefficient (a measure of the gas dissolving capacity of a liquid) and the vapour pressure curve have been added as new material properties. With knowledge of the vapour pressure and the Bunsen coefficient, the pressure-dependent growth and transport of vapour and/or gas bubbles in liquid-filled pipe systems can be considered. Improved simulation of gas and steam cavitation in pressure oscillation investigations In particular, the simulation of pressure oscillation and water hammer problems benefits from the improved modelling, as – depending on the pressure level – the occurrence of gas and/or steam cavitation is to be expected. The correspondingly extended DSHplus pipe models have been validated based on published reference experiments. Also, the tried and tested models of DSHplus can now take the mechanical effects of water hammer or pressure pulsations on piping components into account by enabling the consideration of fluid-structure interaction (FSI library) during a 1D hydraulic simulation. FMI 2.0 standard to replace DSHplus-STC for simulation tool coupling In addition, the new version introduces the Functional Mockup Interface (FMI) 2.0 standard, replacing the former DSHplus-STC (Simulation-Tool-Chain) for simulation tool coupling. The Functional Mockup Interface is a tool independent standard for coupled simulations and supports model exchange as well as co-simulation.
#
11.07.2019
FLUIDON supports the participation of the Sonnenwagen team in the Solar World Challenge
Many topics have little or no relation to one's own work. Some even compete with own projects and inspire us the more. We are pleased when other teams think courageously and seek alternative solutions. The FLUIDON team supports and donates for the Sonnenwagen project. Team Sonnenwagen from Aachen starts at the World Solar Challenge. This is the toughest solar car race in the world: From Darwin to Adelaide - 3022 km through the Australian continent only with the power of the sun. It's great.
#
08.05.2019
Dr. Baum talks about pressure pulsations as a cause of problems in automotive piping systems
In automotive fluid power systems pressure oscillations are quite common, which are the cause of problems and complaints. It thereby does not matter whether it is a hydraulic or pneumatic system. Classic hydraulic examples are braking systems, clutch actuations and power steering as well as the entire framework of the fuel supply or the SCR system of exhaust aftertreatment. Examples of pneumatic systems are the air-conditioning channels, the gasoline vapor extraction of the fuel tank or the exhaust system. In principle, all fluid-technical systems in which components are connected via pipes and hoses. The lecture will take place on 28 May 2019 at 15:30.
#
06.03.2019
FLUIDON presents extensive possibilities for the analysis and optimization of fluid power systems and components.
At the Hannover Messe, at Stand J33 in Hall 21, interested visitors can gain insights into the methods used and are invited to discuss fluid power issues with the FLUIDON team. RohrLEx, the piping expert of the FLUIDON team, will illustrate pressure oscillation problems in more detail and demonstrate how decisive the consideration of fluid-structure interactions is for the optimization of piping systems. Furthermore, application examples of hydraulic and pneumatic system simulation in DSHplus as well as Release 3.10 with its new material data handling will be presented.
#
12.11.2018
Dr. Heiko Baum talks about "Pressure oscillation analysis in fuel supply systems" on November 29, 2018 in Berlin.
The conference "Injection and Fuels" under the leadership of the HDT (Haus der Technik e. V.) from 28 to 29 November 2018 in Berlin will deal with solutions for efficient, low-emission and CO2-neutral drives with internal combustion engines, Diesel, Gasoline, CNG, Alternative fuels, DEF, Water The conference will devote attention to well-to-tank and well-to-wheel fuels with their carbon dioxide footprints. The focus will also remain on current developments, such as the spray behavior of gasoline DI multihole injectors and measuring techniques for determining parameters from liquid and gaseous fuel sprays. CNG applications and fuel-blend-related soot emissions will also be presented for the passenger car segment. Discussion on diesel engines will center around developments taking place in injection technology for large engines and their liquid and gaseous fuels. The hydrogen-fueled engine will also undergo careful analysis in terms of its efficiency. The use of alternative fuels is demanding new testing methods, and the use of additives in fuels is an aspect that is growing in significance too. In SCR systems, the injection of reducing agents is being optimized on a broad scale to boost efficiency.
#
31.10.2018
Registration and information for the free webinar on 8 November at 16:00. Speaker is Dr. Heiko Baum, Managing Director of FLUIDON GmbH.
Optimization of oil and gas pipelines by pressure pulsation analysis will protect systems regarding disturbing noise emissions, permanent component stress, reduced system functionality and a higher failure rate of the system. Pulsation is inherent in all reciprocating equipment such as compressors and pumps, screw compressors, and any other type of equipment used to move gas or liquid. To ensure functional pipeline systems, with long durability and minimized noise levels, the overall system's characteristics must be considered. The conception of a well-designed pipeline system starts with a pressure pulsation analysis. In this webinar ‘RohrLEx’, FLUIDON piping expert, explains the relationship between pressure pulsations and pipeline problems and the advantages in using differently specialized software for this process of optimization. So, he presents both an automatic analysis of pressure pulsations in piping systems with DSHplus and HyperStudy as well as the integration of a control created in Activate. Webinar Outline - Special features and requirements of oil and gas piping systems - Challenges in optimization (e.g. pulsation damping remedies, water hammer effects) - Unrivalled expertise and DSHplus for optimization of piping systems - Advantages in using DSHplus together with HyperStudy and Activate - Guided and supported instead of lost in simulation Who Should Attend? Engineers involved in the construction of piping/pipelines or using them in any way, irrespective of the material, cross-section, pipe length or type of fluid, from industries such as industrial and mobile hydraulic equipment, process engineering and oil and gas industry. As in Automotive, Aerospace, Marine, Manufacturing, Medical Technology, Fluid Power, Science and Education.
#
31.10.2018
Dr. Baum talks about the "Consideration of the acoustic behavior of complex components in the simulative pressure oscillation analysis" on November 21, 2018 on the 19th VDI Congress SIMVEC in Baden Baden.
In automotive fluid power systems pressure oscillations are quite common, which are the cause of problems and complaints. It thereby does not matter whether it is a hydraulic or pneumatic system. Classic hydraulic examples are braking systems, clutch actuations and power steering as well as the entire framework of the fuel supply or the SCR system of ex-haust aftertreatment. Examples of pneumatic systems are the air-conditioning channels, the gasoline vapor extraction of the fuel tank or the exhaust system. In principle, all fluid-technical systems in which components are connected via pipes and hoses. More complex components of these systems usually consist of a sequence of branched channels and volumes, whose material behavior may also change depending on the pressure or temperature. The analytical description of the acoustic behavior (impedance) of these components is difficult and can only be done very laboriously by means of physical simulation models. In this paper, an alternative approach is presented, in which the component impedance is rep-resented by a replacement model whose parameters are determined from processed meas-urement data. For this purpose, a measuring method is used, with which the impedance of any hydraulic and pneumatic components can be measured at short notice.
#
10.10.2018
O. Breuer will speak about "How to Feed Simulation Models with Carriots" October 15, 13:50
At this year's Global Altair Technology Confence in Paris, Oliver Breuer, Head of Software Engineering of FLUIDON GmbH, will speak about Internet of Things (IoT) and the challenges and solutions evoke by using different software respectively DSHplus by FLUIDON together with IoT Platforms such as Carriots by Altair.
#
28.08.2018
Oliver Breuer about Industrial Internet of Things (IIoT) - Opportunities and challenges
Today, Industrial Internet of Things (IIoT) and Industry 4.0 have become buzzwords everyone is talking about. There is an enormous pressure to follow this technical hype. While looking for a use-ful and clever way to start, enterprises are faced with a vast market of data management solu-tions. However, the promoted data volume and its colorful visualization often lack convincing ben-efits. To provide relevant results to the user, the data delivered by connected components in an IIoT-capable system have to be analyzed and placed in the right context. To increase efficiency, the precise study question must be identified first. This reduces calculation times and leads more quickly to useful information.
#
07.05.2018
Dr. Baum, Managing Director, presented at the 11th IFK in Aachen.
Dr. Baum, Managing Director, presents measures to improve an disordered flow to the reservoir. FLUIDON presents solution models for fluid power applications at the 11th IFK in Aachen. To reduce cycle times, hydraulic drives become consciously more dynamic, what consequently leads to higher fluid exchange rates. On the part of the pressure supply no effort is too big for the design engineers. The return pipe to the tank is, however, often still calculated with rough formulas. This can lead to damages to the plant by cavitation, water hammers and diesel effects and is no longer up-to-date. On investigating water hammer events in tank-pipes it becomes obvious that an examination with simple rough calculations is not leading to the desired results. Too many factors must be considered at the calculation of water hammer. Fortunately, nowadays the numeric simulation can calculate the pressure gradient and the pressure am-plitude of a water hammer in very good approximation. Thus, by means of simulation a basic understanding of the problem in the tank pipe can be achieved. In this contribution the boundary conditions which lead to the emergence of a water hammer after cavitation are introduced. Calculation examples explain the differences of water hammers in drives with HLP fluid and with HFC fluid. By the combination of the simulation results to nomograms, a practice-fit tool is introduced, which can be used to assess the water hammer vulnerability of a drive already during the project planning. The presentation of possible constructive remedial measures completes this contribution. IFK is the world's largest scientific fluid power conference and offers users, manufacturers and scientists an international forum for the exchange of experience in the field of hydraulic and pneumatic drive and control systems. Further information can be found at www.ifk2018.com
#
01.05.2018
E. Pasquini presented his current findings on pressure loss in unsteady annular channel flow at the 11th IFK in Aachen.
E. Pasquini presented a methodology for calculating the pressure loss in unsteady flows through concentric annular channels. The momentum equation in axial direction is solved in the Laplace domain to obtain the unsteady radial velocity distribution. Based on the velocity profile, the relation between the Laplace transforms of pressure loss and area-averaged flow velocity is derived. A time domain representation of this equation is provided for oscillating flows. For arbitrary temporal distributions of the flow, the inverse Laplace transform of the relation between pressure loss and flow velocity has to be derived. Since finding the inverse Laplace transform of the exact weighting function for each possible radius ratio is cumbersome, the annular channel flow is approximated by a plane channel. An error analysis shows that this approximation introduces errors less than 1 % for channel geometries down to radius ratios of 0.45. The approximated weighting function is transformed into the time domain by using the residue theorem from complex analysis. The resulting convolution integral can be used in one-dimensional hydraulic system simulation software. IFK is the world's largest scientific fluid power conference and offers users, manufacturers and scientists an international forum for the exchange of experience in the field of hydraulic and pneumatic drive and control systems.